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The solubility of a gas is usually defined in terms of its concentration in a semi-infinite 
material in equilibrium with the gas phase at a pressure of one atmosphere at a specified 
temperature. Since bubbles have a finite radius of curvature, it is important to extend this 
definition to describe their solubility in a way which is analogous to the equation relating 
the increase in solubility and decrease in radius of solid precipitates. 

A thermodynamic analysis is presented which evaluates the gas solubility in equilibrium 
with a bubble and shows it to be independent of bubble radius except in so far as this 
radius is related to the pressure. The analysis is also applicable to bubbles having 
crystallographic faces and to bubbles whose shape is modified by intersection with 
grain-boundaries. 

q, Introduction 
I t  has long been established [1 ] that small water 
droplets evaporate at an enhanced rate because 
of the higher vapour pressure associated with a 
convex surface of small radius of curvature. 
Conversely it has" been shown that the vapour 
pressure is reduced over a concave surface. In 
condensed systems, where precipitates are dis- 
persed in a second phase, an analogous situation 
arises such that small precipitates have a higher 
solubility and on prolonged heat-treatment they 
dissolve in favour of the growth of larger 
precipitates [2, 3]. In all these situations the 
driving force is derived from the reduction in 
total interfacial energy of the system. 

When a gas bubble dissolves in a solid matrix, 
the energy changes are more complex. I f  the gas 
pressure p is restrained by surface tension forces 
[4], then p = 27/r, where ~ is the surface energy 
per unit area and r is the bubble radius. I t  
follows that a reduction in bubble-size is accom- 
panied by a loss of  vacancies [5] and a conse- 
quent increase in the contained gas pressure. 
Entirely contrary to the case of solid precipitates, 
if  a small bubble should dissolve and contribute 
to the growth of a larger one, there is no overall 
change in surface energy [6]. This is readily 
illustrated by considering two bubbles such that 
the smaller one of radius rl dissolves and the 
bubble of radius r2 increases to a radius r~. Since 
the amount  of  gas and temperature are both 
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constant, 

(2~/rl)(47rr13/3) + (2~/r2)(47rr23/3) 
= (2~/r3)(47rr33/3), 

and so rl 2 § r~ 2 = r32 which implies that there is 
no change in total surface area or energy. 

I t  follows from the above relation, however, 
that r~ ~ + r23 < r33, hence there is an increase in 
the total volume occupied by the gas. This im- 
mediately leads to an increase in its entropy and 
to a driving force for bubble growth which is 
effective if the gas solubility is not negligibly 
small. 

2. Thermodynamic Approach to the 
Equilibrium of a Gas Bubble 

We consider the change in free energy of the 
system where the gas is sparingly soluble and 
when a bubble containing n atoms of a mort- 
atomic gas decreases in size as ~n atoms dissolve 
in the infinite matrix in which the bubble is 
situated. Except for very small bubbles, the 
elastic strain energy in the region surrounding 
the bubble is negligible and need not be con- 
sidered. Since the change takes place isotherm- 
ally, work is done against the surface tension of 
the material 7' and it is not necessary to invoke 
the value of the bound energy. In formulating the 
equation describing this process we must take 
into account the heat of solution A H  of the gas, 
the change in entropy of the matrix and of the 
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bubble, the work done as the bubble shrinks and 
the decrease in its surface energy. Hence we can 
write 

3 n A G  - 6 n ( A H  --  T A S )  + 8nkT lnc  - -  
~(nkTlnp)  + 3(pv) - - ) , ~ A  (1) 

where A G is the free energy change per atom 
entering solution; A S  is the associated entropy 
change; c is the gas atom concentration in the 
matrix; p is the gas pressure in the bubble; v is 
the bubble volume; A is the surface area of the 
bubble; k is the Boltzmann's Constant and T is 
temperature in ~ When the bubble is in 
equilibrium with the matrix such that it is tending 
neither to grow nor to dissolve, A G  = 0 and so: 

0 = A H  --  T A S  + kTlnc -- kTlnp -- 
nkT3p/p3n  + ~(pv)/3n - - 7 3 A / 3 n  . (2) 

Equation 2 now gives the gas concentration c 
in terms of the pressure p in the bubble, but to 
obtain an explicit relationship we must assume a 
law of gas behaviour and recall that p = 27/r 
since, otherwise, there would be a flux of 
vacancies into or out of the bubble and equi- 
librium conditions would not be achieved [5]. 
Providing the gas pressure is not too high, it is 
simplest to take as an approximation that the 
perfect gas laws are obeyed, though it can be 
shown that a similar result is obtained in the 
more general case. Thus we can write 

pv = (27/r)(4zrr3/3) = 87rTr2/3 = n k T  

and on differentiating 

S(pv) = 16~Trdr/3 = k T 6 n .  

We also readily deduce that 

nkT~p/p  = - -  nkT~r/r  ~- - -  ~nkT/2  

and ) '3A = )'87rr3r =- 3~nkT/2  . 

Substituting these values, equation 2 reduces to 
the form 

0 -~ A H  --  T A S  + kTlnc -- kTlnp 

or c = p exp ( A S / k )  exp (--  A H / k T ) .  (3) 

A small extension of the argument leads to the 
corresponding equation for a diatomic gas which 
dissociates on entering solution, namely, 

C = p~ exp (ASa/2k) exp (--  A H a / 2 k T )  (4) 

where the suffixes d refer to the diatomic gas. 
These equations are identical with the equa- 

tions [7] for the gas concentration in a semi- 
infinite solid in contact with a gas at a pressurep. 

Thus no additional terms need to be included 
because of the curvature of the surface in the case 
of a bubble. Since, however, p ---- 2),/r it follows 
that small bubbles have a higher solubility than 
larger ones. Before considering this aspect in 
further detail, we next deal with the influence of 
bubble shape. 

3. The Effect of Bubble Shape on 
Solubility 

Bubble shape is affected principally in two ways, 
by intersection with grain-boundaries and/or by 
a limited number of low energy surfaces of  the 
matrix which surrounds it. 

Bubbles are frequently situated on grain- 
boundaries since there is then a decrease in free 
energy due to the change in size and shape of the 
bubbles [8]. An otherwise spherical bubble 
takes the form of two equal sections of spherical 
caps, symmetrically placed with regard to the 
plane of the grain-boundary [3 ]. If  the surface of 
the bubble did not have constant curvature every- 
where, except at the grain-boundary, there would 
be local differences of chemical potential which is 
contrary to the condition for equilibrium. The 
angle 0 between the grain-boundary plane and 
tangent plane to either cap at a point of inter- 
section is determined by the relative values of 
the surface energy ), and grain-boundary energy 
7g since to maintain equilibrium 2)' cos 0 = 7g. 
Thus the lenticular shape of the bubble is 
precisely defined. It can readily be shown that its 
volume V = 2~r3(~ -- cos 0 + �89 cos 8 0), its total 
surface area As = 4~vr 2 (1 - -cos  0) and the area 
Ag of grain-boundary removed by the bubble is 
given by Ag = ~r 2 sin20. 

In establishing conditions of equilibrium, we 
evaluate the work done when the gas at pressure 
p expands the volume of the bubble by ~ V. This 
increases the area of the bubble surface by 3As 
and the area of grain-boundary removed by ~Ag. 
For a small departure from equilibrium we can 
write 

p~ V = ),3As - -  ),g (~Ag 
so that 

d V dAs dA~ 
P-d-~r ---7 -d-; - 2 7  ~ cos0 

and making appropriate substitutions 

P [6~rr2 (~  + c~ O ) ]  3 cos 0 = 

),[87rr (1 --  cos 0) -- 4zrr sin 2 0 cos 0] 

which reduces to pr  = 2),. 
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We conclude that the gas concentration adja- 
cent to a bubble on a grain-boundary is deter- 
mined entirely by the gas pressure contained 
which is related only to the surface energy of the 
matrix and the radius of  curvature of  the faces. 
Thus equation 3 is again applicable in describing 
gas solubility adjacent to a bubble. 

The analysis has so far assumed that bubbles 
are spheres or are described by sections of  
spherical surfaces. I t  is often observed that 
bubbles have plane faces which correspond to 
planes of  lowest surface energy in the matrix 
material [9]. This feature however does not 
introduce a major complication since, when 
equilibrium shape is reached, it has been estab- 
lished [I0] that the perpendicular distance of a 
surface from the centre of  a bubble is proportion- 
al to the energy of that surface. Thus, if surfaces 
of energy 71, 72 . . . .  7i . . . .  are respectively at 
distances Xl, x2 . . . .  xi . . . .  f rom the bubble 
centre, 2 7 1 / x  1 = 2 7 J x  2 = . . .  = 2 7 ~ / x  i . . . . .  

and this ratio can be equated to the gas pressure 
contained so that equation 3 still applies in 
evaluating the solubility of the bubble. 

4. Conclusions 
Equation 3 is shown to be valid irrespective of  
bubble size and shape and the increased solu- 
bility of  smaller bubbles arises only because at 
equilibrium they enclose gas at a higher pressure. 
I t  is important however to avoid apparent para- 
doxes which may arise from this conclusion. I f  
one considers a bubble situated within a semi- 
infinite medium in contact with gas at a pressure 
equal to that of  the gas within the bubble, then it 
might be assumed that this would be a stable 
situation because there would be no concentra- 
tion gradient of  gas within the material. Such a 
result, though, is clearly incorrect since there 
would be a net decrease in free energy of the 

system if the bubble were to dissolve. The 
apparent paradox arises since it is unrealistic to 
consider the bubble unaffected by the external 
pressure and the semi-infinite medium concept is 
inapplicable in this case. The paradox is removed 
when the bubble is situated in a matrix which is 
hydrostatically compressed by the external gas. 
The bubble is then compressed to a smaller size 
with consequent increase in the pressure of  gas it 
contains. A higher gas concentration thus exists 
in the matrix near the bubble and as a result the 
bubble dissolves. 
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